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Abstract 

Emotion recognition is becoming more relevant in our society where most services are digitalized and 
automated and as such there is a need for machine learning algorithms that can accurately infer the 
emotion of individuals in order to provide a service or to carry out a specific function. This paper 
presents a study of emotion recognition in noisy environments with focus on using different filters and 
machine learning algorithms. The research is focused on distinguishing happy from neutral emotion, 
which can be useful in fields such as voice assistants.  Results are compared between Support Vector 
Machines, Random Forest and K-Nearest Neighbours. Samples were collected from YouTube and peer-
reviewed for the two mentioned emotions. The filters that were chosen to be investigated are the 
lowpass and highpass filter from the ffmpeg software. The experimental results reveal that SVM 
performed best from the three algorithms at classifying both the happy and neutral emotion with an F1-
score of 0.762 and 0.737 respectively. 

 

Background Information 

The Basic Emotion Theory [9] puts forth that there are a limited number of basic emotions that humans 
express in a similar manner. The theory was first started by Charles Darwin in 1872 followed by Paul 
Ekman and many other psychologists [10]. The six basic emotions in the theory are; anger, joy, disgust, 
surprise, sadness, and fear. As humans, we exhibit these emotions on a day-to-day basis through non-
verbal cues like facial expressions, body language and verbal signals such as voice. It has become widely 
accepted that emotions are essential for human-to-human interaction and in order to form 
interpersonal relationships. As such, when Picard introduced affective computing in the 1990s, scientists 
strived to find ways to measure human emotions through many different sources such as by detecting 
facial expressions or by analysing voice. Measuring emotions through voice can be challenging due to 
several reasons. For example, certain emotions have only very subtle prosodic differences which would 
make it hard for an algorithm to distinguish. Calm and relaxed are an example of emotions which are 
similar. Additionally, it is important to select the correct features of the voice signals in order to reliably 
identify the correct emotion and to distinguish between different emotions. Since most languages on 
earth have different accents and speaking styles, this creates another layer of complexity for an emotion 
recognition algorithm because such characteristics directly influence the voice signals by changing the 
intensity and pitch of the signal [11, 12]. 

 

 

 

 



Introduction 

Emotion recognition algorithms are useful especially in the field of voice assistants where computers are 
required to interact vocally with a person.  Most emotion recognition algorithms will have to work in 
real environments with background noise and thus it is important to develop and research these 
systems further. Real environments means that there will be background noise which can negatively 
impact a voice signal.  This would make it harder to detect the emotion in that signal [17]. It is likely that 
the noise will always be different as real life environments are unpredictable hence the effect on the 
voice signal cannot be confidently foreseen. An example of different noise can range from music to cars 
or even other people speaking. It is possible to use filtering techniques to drown out the noise, but this 
would require removing parts of the signal. This means that a balance is needed between removing 
noise and still maintaining enough of the signal to confidently and accurately infer the intended 
emotion. Since the intensity of the noise will differ for different signals, this could have the adverse 
effect of either removing too much or too little of the noise which would result in the wrong/no emotion 
being identified.  

This gives rise to the research question: To what extent do different machine learning algorithms in 
conjunction with filters affect the accuracy of classifying emotions in noisy speech?  

This work uses different filters to try to reduce the background noise present in voice samples. The voice 
samples were collected from YouTube and peer-reviewed to make sure the emotions attributed to them 
are happy and neutral, which have a high difference in arousal making recognition easier for machine 
learning algorithms. These samples were used to create a model with three different algorithms, namely 
SVM, RF and KNN. Various metrics such as the confusion matrix and F1-score for both tested emotions 
are reported for the individual algorithms. The results are analysed and discussed in detail with future 
research in mind. 

The paper is structured as follows. Section 2 is a review of relevant literature. Following this, Section 3 
introduces and discusses the methodology for the proposed research in detail. Section 4 contains the 
experimental setup such as cross-validation results and chosen hyperparameters. Next, in Section 5, the 
results are reported and in Section 6 these results are discussed in detail. Section 7 summarizes the 
findings of the research and gives a conclusion based on the research question. Lastly, Section 8 
highlights limitations that were encountered during the making of this project and finishes with 
discussing possible future directions of the research. 

 

 

 

 

 



Literature Review 

Being able to detect the emotion in a person’s voice can be very important in certain fields that employ 
speech recognition like ticket booking stations, the medical field, etc. Such systems will have to be able 
to detect a person’s voice and extract their emotions, often in a noisy environment. There have been 
many papers and studies about extracting a person’s emotion through their voice [1, 7, 11]. These 
studies use acted audio samples from a controlled environment in order to get more accurate results, 
meaning there is no background noise that could interfere with an emotion recognition algorithm. 
However, there have not been too many studies which use real audio samples, meaning that there is 
noise in the background that could make emotion recognition more difficult.  

Some research papers that dive into the topic of emotion recognition in noisy speech are the following. 
In [5], Schuller et al. presents the results of using SVM on samples from three different databases. These 
databases contain samples that are acted and recorded in a controlled environment. Schuller at al. adds 
white noise at different noise levels to the samples in order to receive varying results. The work uses the 
six basic emotions in addition to the neutral emotion. The study found that the best results were 71.11% 
on samples with added noise and 87.5% on a clean database. Schuller et al. argues that this difference is 
due to feature selection and the difficulty to select optimal features with varying noise conditions. 

Next, [14] presents a similar approach as [5]. You et al. shows the results of adding white noise and 
sinusoid noise to a mandarin acted database containing the six basic emotions on SVM. The noise was 
added at varying signal-to-noise (SNR) ratios using the Lipschitz embedding method. The reported 
results show that with the above mentioned embedding method, SVM has a recognition accuracy of 
around 70-75% for varying SNR ratios. 

Chenchah et al. shows an approach to reduce noise levels from different samples using different 
methods of speech enhancements such as wiener filter and classifies these using Hidden Markov Models 
(HMM) [15]. Chenchah et al. adds 4 different real world noises to an acted database, namely; car, 
babble, train and airport. These samples are then pre-processed using the previously mentioned speech 
enhancement methods. The study reports that the speech enhancement methods of spectral 
subtraction and MMSE significantly increased the recognition rate of samples with the airport and 
babble noise, but they were not effective at reducing car noise. 

Lastly, Sztahó et al. used a database of spontaneous telephone speech and records of different talk 
shows, which were classified using automatic emotion recognition with SVM [16]. In Sztahó et al’s. 
study, 4 different emotions (angry, happy, sad and neutral) were tested with different specific feature 
vectors and the recognition results were reported.  The best result that SVM received was 66.27 with 
the angry emotion having the best recognition.  

Most of these papers have one main thing in common. They add noise to acted databases. Many papers 
do this in order to research emotion recognition with noise. There is a significant gap of research on 
genuine real emotions exhibited in real situations with background noise, which reinforces the need for 
the research in this paper. 



Research Methodology 

Data Collection 

Different databases were taken into consideration when choosing the best one. For example, the 
VOiCES database was a strong candidate. It has multiple different speakers with different background 
noise. However, these samples were recorded in a controlled environment with the noise being played 
from different speakers in the room. While this could have been used for the study, it was important 
that the samples are from real situations with the speakers genuinely experiencing the emotions. Due to 
a lack of available databases that have "real" samples with speakers that exhibit emotion, the data was 
retrieved from YouTube clips. Attributes that were taken into account when selecting the samples were 
the amount and type of background noise, the emotion exhibited, the gender of the person, and the 
length of the samples. Due to time constraint, the scope of the research was limited to two emotions, 
happy and neutral. The reason for choosing these two emotions in particular is because happy has a 
high arousal compared to neutral, which means that algorithms may be able to differentiate them 
better. Additionally, it was difficult to find clips on YouTube with people experiencing other emotions, 
like the sad or angry emotion with background noise. The type of background noise that was chosen was 
music. This made the sample collection a little bit easier as samples can be collected from videos taken 
at music festivals. People are usually happy at festivals and as such this was a good source to take the 
samples from. Each sample ranged from 3-7 seconds in length as the full sentence of the speaker was 
usually included.  This way 60 samples were retrieved in total, evenly split to the two emotions 
happiness and neutral and the gender of the speaker. This means that there is an even number of males 
and females in the samples. 5 samples were used for each speaker resulting in 12 unique speakers. The 
samples were peer-reviewed by two people who had to agree to the emotion label attributed to a 
sample for it to be chosen. These people performed the emotion labelling in different environments 
with different headphones to ensure that the emotion label is the same for these environments. When 
the two people disagreed with a label on a sample, the sample was discarded and replaced. The samples 
were then split into 40:20 which were used for training/validation and testing sets respectively. 

Sample Pre-processing and Filters 

Before any sort of training could take place, the samples had to be pre-processed. This includes 
converting them into the right format of .wav, and applying audio filters in-order to reduce the noise. 
The software that was used for both of these steps is ffmpeg. The filters that were used to pre-process 
the samples were a combination of the lowpass and highpass filters. The filter selection is described in 
more detail in the experimental setup section. With the lowpass and highpass filter it is possible to cut 
out certain frequencies from the samples. This means that all frequencies other than human voice 
frequencies can be removed. The frequency range that human voice is attributed to is usually between 
200 to 3000 Hz. However, this does not mean that only human speech is left when applying these filters. 
This is due to the fact that background noise can have a variety of frequencies that could intersect with 
the above described frequency range. The filters were tested extensively with different options, alone 
and together in-order to determine the best accuracy on the validation set. 



Fig 1.1: A depiction of the SVM algorithm showing the 
hyperplane, margin and support vectors 

Fig 1.2: A depiction of the RF algorithm showing the 
ensemble of decision trees and majority prediction 

Classifiers 

Support Vector Machine (SVM) 

SVM’s are supervised classification algorithms and they 
can distinguish between at least two groups of data. In 
order to differentiate two groups, the goal of SVM is to 
find a hyperplane that distinctly separates the data 
points. It achieves this by computing the maximum 
distance between the hyperplane and the closest 
instances of data. The distance is also known as the 
margin and the closest data points to the hyperplane are 
the support vectors. An instance of data that falls on 
either side of the hyperplane will be categorized as the 
respective group or class. The process described above is 
visualized in Fig 1.1. 

SVM was chosen for this study because it is a popular choice in classification problems and widely used 
in different research including but not limited to emotion recognition due to their performance and 
generalization capabilities [2, 3, 5]. Additionally, it has been shown to be among the top performing 
algorithms for different classification problems [4]. In [1], Yacoub et al. shows that when available 
training data is scarce, SVM outperforms other tested algorithms, which is relevant to this research as 
there are not many training samples. 

Random Forest (RF) 

The RF algorithm creates many different decision 
trees that work together as an ensemble. Each tree 
in the forest computes a separate class prediction 
and the class that is predicted by the most trees 
becomes the chosen prediction. Since RF aggregates 
the predictions of individual decision trees, it has 
good generalization [8]. A decision tree in the forest 
comes to a prediction based on the best feature 
from a random subset of features. This means that 
when splitting a node, the random forest only takes 
into consideration a subset of features instead of all 
available features. An example of a RF can be seen in Fig 1.2 

The Random Forest algorithm was picked because it is 
based on the decision tree classifier. According to different research papers, decision trees and in 
particular the Random Forest algorithm perform well in the task of emotion recognition [6,7]. In 



Fig 1.3: A depiction of the KNN algorithm showing the 
process of assigning a new data point 

addition, Random Forest is good at avoiding overfitting since it creates trees by using random subsets of 
features and training data [8]. 

K-Nearest Neighbours 

KNN is a very simplistic but effective supervised learning 
algorithm. It works under the assumption that similar data is 
grouped closely together. This means that if there is a data 
point x, it is reasonable to assume that k closest data points 
are of the same class as x. When the algorithm needs to 
classify a new data point, it takes into consideration the 
value of k and draws a metaphorical circle around itself 
which encompasses the k nearest data points. It determines 
which data points are closest through the Euclidean distance 
also called the straight-line distance. KNN then assigns the 
data point based on majority voting. An example of KNN can 
be seen in Fig 1.3. 

KNN was chosen because like SVM, it is often used in emotion classification tasks and sometimes in 
order to compare it to other classifiers [4].  

Evaluation 

Scoring Metrics 

One of the metrics used to interpret the results was the F1-score. The F1-score is a statistical analysis 
which puts emphasis on the falsely classified samples of a test. It is calculated using the harmonic mean 
of precision (Equation 2) and recall (Equation 3). The F1-score offers advantages over traditional 
accuracy because the latter only looks at all correctly identified cases whereas the F1-score also takes 
into account the incorrectly identified cases. This is especially important in situations where there is an 
imbalance in class distribution. Equation 1 shows the exact formula of the F1-score. The best score 
possible is a 1, which means that both the precision and recall have a perfect score and the worst score 
is a 0, which means that either the precision or recall is 0. While the F1-score will be the prevalent 
scoring metric, the accuracy, precision and recall will also be calculated and reported in order to have a 
more in-depth analysis of the results. 

𝐹𝐹1 = 2 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

     Equation 1 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

      Equation 2 

𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

      Equation 3 

 



Learning Rate 

The learning rate was considered in order to see whether the number of samples played a role in the 
classifiers accuracy. A plateau in the graph after a certain number of samples indicates that even if more 
samples were added to the training set, the overall accuracy would not increase. However, if the 
learning curve does not plateau and there is a positive trend in the graph, then it is reasonable to 
assume that increasing the number of samples could increase the classifiers accuracy. This learning 
curve was calculated and graphed for both SVM and RF, one with the default ordering in the local 
system and one with random ordering. The random ordering was calculated over 10 runs and the 
average accuracy and standard deviation (SD) were calculated and graphed. For each of the 10 runs, a 
different model was made with an incrementing number of samples and tested against the entire test 
set. For example, a model with 1 sample from each class, happy and neutral, was tested against the test 
set and the results recorded. Then the number of samples was incremented by 1 for each class and this 
process was repeated again for all samples in the training set. The averages were then calculated and a 
different run was started from the beginning. The learning curve was not calculated for KNN. The reason 
for this is due to KNN needing at least the number of samples that the parameter N-neighbours is set to. 
In this case, hyperparameter search found that the optimal number for this is 12. This means that KNN 
needs at least 12 samples to create a model and hence the learning curve could not be plotted. 

Hyperparameter Selection 

In order to find the optimal hyperparameters for each algorithm, grid search with 5-fold cross validation 
was used on the training set to cover a range of parameters. It is important to have a balance between 
computation time and the amount of parameters searched, as more parameters means computation 
time is higher. This is especially true for big datasets with thousands of samples. For SVM and KNN the 
range of parameters that was searched was quite high since the computation time of these algorithms is 
low with the amount of training samples. In comparison, Random Forest took the longest to compute 
because there were many possible options and parameters to consider. Additionally, RF takes 
considerably longer than the other two algorithms to create a model. The chosen hyperparameters can 
be found in the Appendix under Table 5-7. 

Experimental Setup 

The purpose of the experiment is to determine the accuracies of SVM, RF and KNN on noisy speech in 
conjunction with filters. The filters are applied to the speech samples, which are then used to create a 
model for the respective machine learning algorithms. These will then be evaluated against the test set 
to receive the results. 

Filter Selection 

For the filter selection various different filters were taken into account and tested. These filters were 
primarily selected from the ffmpeg program, but Audacity was also taken into consideration.  



For Audacity the main filter that was tested was the noise reduction effect. However, for this filter to 
work a sample of only background noise has to be supplied to it, which was not feasible as the samples 
were selected to have human voice in the majority of it. Additionally, while Audacity does have a 
command line interface, the noise reduction effect is not supported at the time of writing. Due to this all 
samples would have to be manually processed without automation, which is not viable. 

Ffmpeg has multiple filters which can apply the noise reduction effect. The two primary filters of this 
category that were considered and tested were the afftdn and arnndn filter. The main parameter of 
afftdn is “nr” which takes as input a number between 0.01 and 97 which represents a decibel amount. 
However, applying this filter to the samples made no difference in any of the algorithms accuracy even 
with the highest dB. The arnndn filter is used to reduce noise from speech using recurrent neural 
networks. It takes as input a model m and then applies this to the sample in order try and isolate the 
voice. With SVM and KNN, this filter did not make a difference in the accuracy. However, for RF the 
accuracy decreased when this filter was applied. Hence, neither of these filters was selected to be used.  

 

 SVM RF KNN 
No Filters/Baseline 0.62 0.75 0.68 
Highpass=200, Lowpass=3000 0.68 0.85 0.68 
Highpass=300, Lowpass=5000 0.72 0.88 0.75 

Table 1: 5-fold cross validation accuracy of SVM, RF and KNN for different filters 

Ffmpeg also has the lowpass and highpass filters. These filters make it possible to remove certain 
frequencies from the samples. Since human voice frequencies are limited to a certain range, usually 
between 200-3000 hertz, these filters were a good choice to remove some of the background noise. For 
all of the algorithms the filters showed a significant increase in accuracy. Different frequency ranges 
were used in order to determine which range has the best accuracy for the algorithms. Table 1 shows 
the accuracies of the different algorithms for two different frequency ranges and for no filters. No other 
frequency range was comparable to the accuracy of the 300-5000 Hz range. Other frequencies were 
tested, but they were either worse or the same as the 200-3000 Hz range. Based on these results, the 
lowpass and highpass filters were chosen to be applied to the samples with the 300-5000 Hz range. Note 
that all previously mentioned filters were tested in conjunction with one another, but the resulting 
accuracies never increased. 

Cross-Validation Scores 

After the hyperparameters were selected, 5-fold cross validation was used on the training set in order to 
assess the results for the filters in conjunction with the hyperparameters. This was done to receive some 
insights into what the final results on the test set may look like. The accuracy and standard deviation 
(SD) were calculated for this and reported in Table 2. Much like in [4], the 5-fold cross validation was 
repeated 10 times to account for possible variance. For Random Forest a different random seed was 
used for each computation to ensure that the results are different for each run. 



 Accuracy Score Standard Deviation 
SVM 0.72 0.24 
KNN 0.72 0.15 
RF 0.733 0.164 

Table 2: Average 5-fold cross validation scores of SVM, KNN and RF with chosen hyperparameters 

For both SVM and KNN the results did not change for any of the 10 runs meaning that every 
computation returned the same accuracy and SD. Even though these 10 runs returned the same results, 
the SD is not 0. This is because the accuracies of the 5 folds during cross validation are different, but this 
difference is always the same, hence the average accuracy and SD for the 10 runs is also the same. 
However, for RF the results were different at each run, which was expected since a different random 
seed was employed. From these preliminary results it can be observed that the algorithms perform 
similar to one another in distinguishing happy from neutral.  

 

Results 

Similarly to the cross validation scores, SVM and KNN did not see a change in results no matter how 
often they were executed. For RF, ten different random states were used in order to make sure the 
results are stable. For all of these states the results were the same. As such, the results reported in Table 
3-4 for all algorithms are constant and do not change based on the number of times they are run. 

 Accuracy Score Precision Recall F1-Score 
SVM 0.75 0.727 0.8 0.762 
KNN 0.65 0.636 0.7 0.667 
RF 0.65 0.714 0.5 0.588 

Table 3: Accuracy, recall, precision and F1-score results for class 0(happy) of SVM, KNN and RF 

 

 Accuracy Score Precision Recall F1-Score 
SVM 0.75 0.778 0.7 0.737 
KNN 0.65 0.666 0.6 0.632 
RF 0.65 0.615 0.8 0.696 

Table 4: Accuracy, recall, precision and F1-score results for class 1(neutral) of SVM, KNN and RF 

As can be seen in Table 3-4, SVM performs best from these algorithms with an accuracy score of 0.75 
and F1-score of 0.762 and 0.737 for the happy and neutral emotion respectively. SVM’s precision of 
0.727 in table 3 indicates that when it predicts a sample to be happy, it has a 73% chance to be correct. 
SVM has a recall of 0.8 in table 3 which means that is successfully identified 80% of all happy samples. 
Alone these metrics are not particularly useful, as a perfect score in one does not indicate a good model. 
However, when used in conjunction like in the F1-score, these metrics give a good indication of the 
algorithms performance. KNN performs better than RF for class 0 and vice versa for class 1. KNN 
performs well when identifying happy samples with an F1-score of 0.667 and a recall of 0.7. This is not 
true for RF as it cannot differentiate happy samples. This can be seen in table 3 where its recall is 0.5, 



which means that it got half of the identified happy emotions correct. However, RF excels at identifying 
the neutral emotion. Table 4 shows this with its recall of 0.8.  

Fig 2.1: SVM ROC Curve and Normalized Confusion Matrix 

SVM’s ROC Curve in Fig 2.1 shows the best separability of all classifiers with an AUC at 0.78. This 
indicates that SVM has a 78% chance of correctly identifying the class. From SVM’s confusion matrix it 
can be seen that it performs best when classifying the happy emotion and decently well when classifying 
the neutral emotion. This shows that SVM can discriminate well between the two emotions. This is not 
the case for RF, which according to the confusion matrix shows that it misclassified half of the happy 
samples. 

 

Fig 2.2: Random Forest ROC Curve and Normalized Confusion Matrix 

The ROC curve of RF in Fig 2.2 shows that its separability is subpar and it is somewhat close to 
approaching a 45 degree diagonal, which would indicate that it cannot separate the two classes at all. 
An AUC of 0.67 can be interpreted as a 67% chance that the model will correctly distinguish the two 



classes. Based on this, RF’s AUC is the worst of the three classifiers. The RF confusion matrix shows that 
Random Forest performs better in classifying the neutral emotion compared to both SVM and KNN. 
However, it is not able to accurately classify the happy emotion and is the worst algorithm in doing so. 

 

Fig 2.3: KNN ROC Curve and Normalized Confusion Matrix 

KNN’s ROC curve in Fig 2.3 is similar to that of RF in regards to having subpar separability. However, it 
performs worse than the RF ROC curve both in the beginning until 0.2 FP and in the end from 0.6 FP. 
KNN’s confusion matrix shows that unlike SVM or RF, it does not have the best performance in any of 
the fields that matter. It does perform worse in categorizing the neutral emotion compared to both 
other algorithms. 

 

  

Fig 3.1: Learning Curve using default ordering and average of random ordering for SVM 



Note that in the learning curves for Fig 3.1 & Fig 3.2 the number of samples correspond to 1 sample of 
each class. This means that 1 sample on the graph is 1 sample for the happy emotion and 1 for the 
neutral emotion since machine learning algorithms require at least 1 sample of each class in order to 
make a predicition. 

SVM’s default ordering learning curve shows that after six samples, the accuracy spikes to 0.85 and does 
not decrease significantly from this point until the very end. At the beginning of the learning curve the 
algorithm is having trouble to classify the samples correctly, which is to be expected as it is hard for it to 
learn anything from very few samples. 

The random ordering learning curve shows a positive trend and a steady increase in accuracy as the 
number of samples increases. Additionally, the SD decreases as the number of samples increase. This 
decrease in SD is to be expected as the algorithm is able to learn more about the samples the more 
samples are provided to it. Something to note is that no matter what ordering the samples had, SVM 
always had the same results of 0.75 when all samples were taken into consideration. This can be seen in 
Fig 3.1 under the random ordering learning curve at 20 samples. The accuracy is 0.75 and the SD is 0. 
Based on how SVM works, this makes sense and is nothing unusual. The same is true for RF with an 
accuracy of 0.65 as can be seen in Fig 3.2 for 20 samples. 

 

Fig 3.2: Learning Curve using default ordering and average of random ordering for RF 

For RF, the default ordering learning curve in Fig 3.2 is inconsistent and quite disordely. In the beginning, 
it seems to wrongly classify a majority of the samples when the accuracy drops to 0.3 after which it 
sharply spikes to 0.85. What follows is a seemingly random decrease and increase in accuracy for the 
next 3-4 samples. At 16 samples, the accuracy slowly begins to increase. This may mean that the 
algorithm has started to learn based on the most relevant features.  

The RF random ordering learning curve in Fig 3.2 shows a similar trend as the SVM random ordering 
learning curve showed. There is a slight positive trend in increasing accuracy as the number of samples 
increases. Similarly, the SD decreases as the number of samples increases. This is due to the same fact as 



described above, namely that with more samples the algorithm is able to learn and distinguish the 
classes much better. 

Discussion 

A number of points can be discussed based on the results reported. Firstly, from the results mentioned 
above, it can be seen that SVM performed better than the RF and KNN algorithms. This can be 
attributed to SVM’s ability to generalize since “it is based on the statistical learning theory of structural 
risk management” [4, 13]. However, this does not mean that SVM is always the better algorithm to 
choose for emotion classification tasks. For example, if more or less samples were used, one of the other 
algorithms may perform better. 

Secondly, when comparing the obtained results to other research, it can be seen that similar results 
were received as in [4]. In the specified study, the reported SVM accuracy was 78.75% and for KNN it 
was 70.84%, which is similar to this research. However, it has to be kept in mind that the study by Zhao 
et al. was slightly different compared to this study since it used acted databases with no background 
noise and the six basic emotions. Additionally, the study in [1] also found a similar SVM accuracy of 
78.4% and a 3-NN accuracy of 78.4%. While the KNN accuracy is not similar, the SVM accuracy is again 
comparable to this research. However, Yacoub et al. used anger vs. neutral instead of happiness. In 
addition, they used an acted database. Even though their study used anger instead of happiness, it is still 
comparable to this research as anger has a high arousal just like happiness, which means that it is likely 
that similar results would be achieved on anger vs. neutral. 

Next, even though RF’s AUC is the lowest, this does not mean that RF is the worst classifier. This is 
because even though the AUC of SVM and KNN is better, it is possible for these to score worse in a 
specific region. This can be seen when comparing RF’s and KNN’s confusion matrix. While KNN 
outperforms RF when classifying the happy emotion, RF performs better when classifying the neutral 
emotion. This is further backed up when looking at the F1-score of KNN and RF in Table 4. This shows 
that RF’s F1-score is significantly better than that of KNN at 0.696 and 0.632 respectively. Additionally, 
RF’s ROC curve outperforms KNN’s ROC curve in two positions, as was discussed under Fig 2.3. 

From the random ordering learning curve for SVM in Fig 3.1 it can be seen that the accuracy and hence 
the learning rate for SVM is steadily increasing based on the number of samples. The graph shows that 
the learning curve did not plateau. Fig 3.2 shows the random ordering learning curve for RF and much 
like SVM there is a positive trend. This could mean that if more samples were used in training, both 
SVM’s and RF’s accuracy could increase.  

Lastly, Table 1 shows that the lowpass and highpass filter have a greater effect with a higher frequency 
range. This could be because high arousal emotions like happiness may result in people being louder and 
having higher frequencies compared to other emotions that are less intense. As a result, if the filter cuts 
off anything above the 3000 Hz range, it may cut off part of the voice or emotion for some people. This 
is most likely what happened since the higher frequency range of 300-5000 Hz performed better. 



Conclusion 

This paper presents a study of emotion recognition in noisy environments using different filters and 
machine learning algorithms. To this end, different filters and algorithms were investigated to find an 
optimal set. The best filters found were the lowpass and highpass filter as presented in the ffmpeg 
software. These filters were used to pre-process samples collected from YouTube exhibiting happy and 
neutral emotions. These samples were tested with three different algorithms; SVM, RF and KNN. The 
best algorithm that was found was SVM with an F1-score of 0.762 for class 0 (happy) and 0.737 for class 
1 (neutral). This is followed by RF with F1-scores of 0.588, 0.696 and KNN with F1-scores 0.667, 0.632 for 
class 0 and class 1 respectively. Keeping in mind that samples with background noise were used in this 
research, the results of this study are quite promising since they are comparable to other studies 
without background noise.  

These results also refer back to the research question: To what extend do different machine learning 
algorithms in conjunction with filters affect the accuracy of classifying emotions in noisy speech? Table 1 
shows that when applying filters, the accuracy of all the machine learning algorithms increased by 
almost 10%. This may be significant enough to claim that the effect of filters with machine learning 
algorithms increase the accuracy of classifying emotions to a certain extent, but more research is 
needed to have a more definitive answer. 

 

Limitations/Future Works 

Limitations 

A limitation of this research was that the amount of samples available to train were most likely not 
sufficient to reach the best possible accuracy. This can be seen in the learning curves for SVM and RF in 
Fig 3.1 & Fig 3.2. The learning curve did not plateau at any point, which could mean that if more samples 
were available, the algorithms may have been able to categorize the emotions better. 

Due to time constraints and the lack of a suitable database, the study had to be limited to two emotions 
instead of the six basic emotions. This meant that the results could not be analysed as in depth as 
previously hoped. 

During grid search, the RF algorithm took up a majority of the computation time compared to SVM and 
KNN. In order to reduce the running time of grid search on RF, the parameter range was decreased, 
which has the possibility of having found a suboptimal set of hyperparameters. There may be a different 
set of hyperparameters that could increase the accuracy of the RF algorithm. 

 

 



Future Works 

Since RF was the best at categorizing the neutral emotion as was seen in Fig 2.2 and SVM was best in 
categorizing the happy emotion, in future research a hybrid could be made between SVM and RF where 
SVM categorizes the happy emotion and RF categorizes the neutral emotion. This way it may be possible 
to receive better results overall. 

 The learning curves for both SVM and RF in Fig 3.1 & Fig 3.2 showed that there was no plateau. Hence it 
is reasonable to assume that if more samples were added to the training set, the accuracies for the 
classifiers could increase, which would be a good test for future papers. 

Lastly, testing a new dataset with different background noise or different emotions could give some 
insight whether the results obtained in this research are comparable. 
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Appendix 

 SVM 
C 0.001 
Kernel Linear 
Tol 1e-13 

Table 5: SVM chosen hyperparameters 

 KNN 
Algorithm Brute 
N-neighbours 12 
P 1 
Weights Uniform 

Table 6: KNN chosen hyperparameters 

 RF 
N estimators 700 
Max depth 40 
Max features None 
Min samples split 5 
Bootstrap False 

Table 7: RF chosen hyperparameters 


